Robot Stereotaxic – StereoDrive

Robot Stereotaxic – StereoDrive


Fully motorized stereotaxic instrument for rats, mice and larger animals. Contains software with digital brain atlas and bregma settings. Computer controlled head tilt correction and angle adjustment. 1 micron precision.

Add to quote request
  • Description
  • Download
  • Publications

Robot Stereotaxic – StereoDrive

Neurostar is the inventor and only manufacturer of the Robot Stereotaxic istrument StereoDrive. Using the Robot Stereotaxic frame, you can focus on the experiment without having to manipulate the stereotaxic. The StereoDrive stereotaxic frame allows motorized, computer controlled positioning of the probe. Atlas integration and intuitive movement control enables high accuracy, high-throughput electrophysiology and stereotaxic injections.



  • computer control

  • atlas integration

  • automated scaling brain atlas in relation to bregma and lambda points

  • head tilt correction

  • bregma setting

  • angle adjustment

  • avoids human errors

  • ultra precise

  • time saving

  • high throughput

  • experiment planning

  • define/store targets

  • intuitive navigation

Elimination of common drawbacks

  • One of StereoDrive‘s outstanding advantage is that you no longer have to concentrate on the conversion of frame coordinates into atlas coordinates. With StereoDrive you focus on the atlas and letting the software do all required calculations.
  • StereoDrive achieves an unprecedented high-precision positioning unachieved by manual or digital-readout stereotaxic instruments.
  • Using StereoDrive, probe positioning is executed computer controlled eliminating hand-transmitted vibrations.

Have you already a stereotaxic from Kopf or Stoelting?

Upgrade it to Robot Stereotaxic! Neurostar offers adapt Robot Stereotaxic to U-frame you use.

Watch all adventages and functionalities



Prefrontal Activity Links Nonoverlapping Events in Memory.

Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013)
The Journal of Neuroscience, 33(26), 10910-10914.

Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats.

Babaei, P., Tehrani, B. S., & Alizadeh, A. (2013)
Journal of Behavioral and Brain Science, 3, 156-161.

Subcortical effects of transcranial direct current stimulation (tDCS) in the rat.

Bolzoni, F., Bączyk, M., & Jankowska, E. (2013)
J. Physiol. 2013 Aug 15;591(Pt 16):4027-42. doi: 10.1113/jphysiol.2013.257063. Epub 2013 Jun 17.

Synaptic Muscarinic Response Types in Hippocampal CA1 Interneurons Depend on Different Levels of Presynaptic Activity and Different Muscarinic Receptor Subtypes.

Bell, L. A., Bell, K. A., & McQuiston, A. R. (2013)
Neuropharmacology. 2013 Oct;73:160-73. doi: 10.1016/j.neuropharm.2013.05.026. Epub 2013 Jun 5.

Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy.

Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., O’Brien, T. J. (2013). 
PLOS ONE, 8(6), e66962.

The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein.

Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., Aguzzi, A. (2013)
Nature, 501(7465), 102-106.

The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons.

Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. (2013)
Journal of Neurophysiology, 109(11), 2827-2841.



Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions.

Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., Van der Valk, P., Kipp, M. (2012).
Glia, 60(10), 1468-1480.

Responsiveness to nicotine of neurons of the caudal nucleus of the solitary tract correlates with the neuronal projection target.

Feng, L., Sametsky, E. A., Gusev, A. G., & Uteshev, V. V. (2012)
Journal of Neurophysiology, 108(7), 1884-1894.



Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: A PGE2-independent mechanism.

Girardet, C., Bonnet, M. S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Troadec, J. D. (2011)
Toxicological Sciences, 124(1), 179-191.



A26 Transgenic miniature pig as an animal model for Huntington’s disease.

Baxa, M., Juhas, S., Pavlok, A., Vodicka, P., Juhasova, J., Hruška-Plocháň, M., Motlik, J. (2010).
Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A8-A9

A28 Accumulation and aggregation of human mutant huntingtin and neuron atrophy in BAC-HD transgenic rat.

Yu, L., Metzger, S., Clemens, L. E., Ehrismann, J., Ott, T., Gu, X., Nguyen, H. P. (2010).
Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.

Frontostriatal pathology in the (C57BL/6J) YAC128 mouse uncovered by the operant delayed alternation task.

Brooks, S., Jones, L., & Dunnett, S. B. (2010). A29
Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A10.

A27 Expression of the human mutant huntingtin in minipig striatum induced formation of EM48+ inclusions in the neuronal nuclei, cytoplasm and processes.

Hruška-Plocháň, M., Juhas, S., Juhasova, J., Galik, J., Miyanohara, A., Marsala, M., Motlik, J. (2010).
Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.